MakeItFrom.com
Menu (ESC)

Grade 33 Titanium vs. N08801 Stainless Steel

Grade 33 titanium belongs to the titanium alloys classification, while N08801 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 33 titanium and the bottom bar is N08801 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 23
34
Fatigue Strength, MPa 250
260
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 240
570
Tensile Strength: Ultimate (UTS), MPa 390
860
Tensile Strength: Yield (Proof), MPa 350
190

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 320
1090
Melting Completion (Liquidus), °C 1660
1390
Melting Onset (Solidus), °C 1610
1360
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
12
Thermal Expansion, µm/m-K 8.7
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 55
30
Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 33
5.5
Embodied Energy, MJ/kg 530
79
Embodied Water, L/kg 200
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
220
Resilience: Unit (Modulus of Resilience), kJ/m3 590
92
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 24
30
Strength to Weight: Bending, points 26
25
Thermal Diffusivity, mm2/s 8.7
3.3
Thermal Shock Resistance, points 30
20

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 0.1 to 0.2
19 to 22
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
39.5 to 50.3
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0.35 to 0.55
30 to 34
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.010 to 0.020
0
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 98.1 to 99.52
0.75 to 1.5
Residuals, % 0 to 0.4
0