MakeItFrom.com
Menu (ESC)

Grade 33 Titanium vs. S44626 Stainless Steel

Grade 33 titanium belongs to the titanium alloys classification, while S44626 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 33 titanium and the bottom bar is S44626 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 23
23
Fatigue Strength, MPa 250
230
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 41
80
Shear Strength, MPa 240
340
Tensile Strength: Ultimate (UTS), MPa 390
540
Tensile Strength: Yield (Proof), MPa 350
350

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1390
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
17
Thermal Expansion, µm/m-K 8.7
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 55
14
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 33
2.9
Embodied Energy, MJ/kg 530
42
Embodied Water, L/kg 200
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
110
Resilience: Unit (Modulus of Resilience), kJ/m3 590
300
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
26
Strength to Weight: Axial, points 24
19
Strength to Weight: Bending, points 26
19
Thermal Diffusivity, mm2/s 8.7
4.6
Thermal Shock Resistance, points 30
18

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.060
Chromium (Cr), % 0.1 to 0.2
25 to 27
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
68.1 to 74.1
Manganese (Mn), % 0
0 to 0.75
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0.35 to 0.55
0 to 0.5
Nitrogen (N), % 0 to 0.030
0 to 0.040
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.010 to 0.020
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 98.1 to 99.52
0.2 to 1.0
Residuals, % 0 to 0.4
0