MakeItFrom.com
Menu (ESC)

Grade 33 Titanium vs. S81921 Stainless Steel

Grade 33 titanium belongs to the titanium alloys classification, while S81921 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 33 titanium and the bottom bar is S81921 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 23
29
Fatigue Strength, MPa 250
370
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
79
Shear Strength, MPa 240
460
Tensile Strength: Ultimate (UTS), MPa 390
710
Tensile Strength: Yield (Proof), MPa 350
500

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
990
Melting Completion (Liquidus), °C 1660
1430
Melting Onset (Solidus), °C 1610
1390
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 8.7
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 55
14
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 33
2.9
Embodied Energy, MJ/kg 530
41
Embodied Water, L/kg 200
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
180
Resilience: Unit (Modulus of Resilience), kJ/m3 590
630
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
25
Strength to Weight: Bending, points 26
23
Thermal Diffusivity, mm2/s 8.7
4.0
Thermal Shock Resistance, points 30
20

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0.1 to 0.2
19 to 22
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
66.7 to 75.9
Manganese (Mn), % 0
2.0 to 4.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0.35 to 0.55
2.0 to 4.0
Nitrogen (N), % 0 to 0.030
0.14 to 0.2
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.010 to 0.020
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.1 to 99.52
0
Residuals, % 0 to 0.4
0