MakeItFrom.com
Menu (ESC)

Grade 33 Titanium vs. S82121 Stainless Steel

Grade 33 titanium belongs to the titanium alloys classification, while S82121 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 33 titanium and the bottom bar is S82121 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 23
28
Fatigue Strength, MPa 250
370
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 41
78
Shear Strength, MPa 240
470
Tensile Strength: Ultimate (UTS), MPa 390
730
Tensile Strength: Yield (Proof), MPa 350
510

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
1020
Melting Completion (Liquidus), °C 1660
1430
Melting Onset (Solidus), °C 1610
1380
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 8.7
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 55
14
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 33
2.8
Embodied Energy, MJ/kg 530
40
Embodied Water, L/kg 200
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
180
Resilience: Unit (Modulus of Resilience), kJ/m3 590
660
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
26
Strength to Weight: Bending, points 26
23
Thermal Diffusivity, mm2/s 8.7
4.0
Thermal Shock Resistance, points 30
20

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.035
Chromium (Cr), % 0.1 to 0.2
21 to 23
Copper (Cu), % 0
0.2 to 1.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
66.7 to 75.4
Manganese (Mn), % 0
1.0 to 2.5
Molybdenum (Mo), % 0
0.3 to 1.3
Nickel (Ni), % 0.35 to 0.55
2.0 to 4.0
Nitrogen (N), % 0 to 0.030
0.15 to 0.25
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.010 to 0.020
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 98.1 to 99.52
0
Residuals, % 0 to 0.4
0