MakeItFrom.com
Menu (ESC)

Grade 34 Titanium vs. 6005A Aluminum

Grade 34 titanium belongs to the titanium alloys classification, while 6005A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 34 titanium and the bottom bar is 6005A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 20
8.6 to 17
Fatigue Strength, MPa 310
55 to 110
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
26
Shear Strength, MPa 320
120 to 180
Tensile Strength: Ultimate (UTS), MPa 510
190 to 300
Tensile Strength: Yield (Proof), MPa 450
100 to 270

Thermal Properties

Latent Heat of Fusion, J/g 420
410
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1660
650
Melting Onset (Solidus), °C 1610
600
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 21
180 to 190
Thermal Expansion, µm/m-K 8.7
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
47 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
150 to 170

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 33
8.3
Embodied Energy, MJ/kg 530
150
Embodied Water, L/kg 200
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 960
76 to 530
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 31
20 to 30
Strength to Weight: Bending, points 31
27 to 36
Thermal Diffusivity, mm2/s 8.4
72 to 79
Thermal Shock Resistance, points 39
8.6 to 13

Alloy Composition

Aluminum (Al), % 0
96.5 to 99.1
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0.1 to 0.2
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0.35 to 0.55
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.010 to 0.020
0
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
0.5 to 0.9
Titanium (Ti), % 98 to 99.52
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15