MakeItFrom.com
Menu (ESC)

Grade 34 Titanium vs. ACI-ASTM CA6NM Steel

Grade 34 titanium belongs to the titanium alloys classification, while ACI-ASTM CA6NM steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 34 titanium and the bottom bar is ACI-ASTM CA6NM steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 20
17
Fatigue Strength, MPa 310
380
Poisson's Ratio 0.32
0.28
Reduction in Area, % 34
40
Shear Modulus, GPa 41
76
Tensile Strength: Ultimate (UTS), MPa 510
850
Tensile Strength: Yield (Proof), MPa 450
620

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
770
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
25
Thermal Expansion, µm/m-K 8.7
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 55
10
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 33
2.5
Embodied Energy, MJ/kg 530
34
Embodied Water, L/kg 200
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
130
Resilience: Unit (Modulus of Resilience), kJ/m3 960
1000
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
30
Strength to Weight: Bending, points 31
26
Thermal Diffusivity, mm2/s 8.4
6.7
Thermal Shock Resistance, points 39
31

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.060
Chromium (Cr), % 0.1 to 0.2
11.5 to 14
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
78.4 to 84.6
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 1.0
Nickel (Ni), % 0.35 to 0.55
3.5 to 4.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.010 to 0.020
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98 to 99.52
0
Residuals, % 0 to 0.4
0