MakeItFrom.com
Menu (ESC)

Grade 34 Titanium vs. AISI 301LN Stainless Steel

Grade 34 titanium belongs to the titanium alloys classification, while AISI 301LN stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 34 titanium and the bottom bar is AISI 301LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 20
23 to 51
Fatigue Strength, MPa 310
270 to 520
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 320
450 to 670
Tensile Strength: Ultimate (UTS), MPa 510
630 to 1060
Tensile Strength: Yield (Proof), MPa 450
270 to 770

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
890
Melting Completion (Liquidus), °C 1660
1430
Melting Onset (Solidus), °C 1610
1380
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 8.7
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 55
13
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 33
2.7
Embodied Energy, MJ/kg 530
39
Embodied Water, L/kg 200
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
220 to 290
Resilience: Unit (Modulus of Resilience), kJ/m3 960
180 to 1520
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
22 to 38
Strength to Weight: Bending, points 31
21 to 30
Thermal Diffusivity, mm2/s 8.4
4.0
Thermal Shock Resistance, points 39
14 to 24

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0.1 to 0.2
16 to 18
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
70.7 to 77.9
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0.35 to 0.55
6.0 to 8.0
Nitrogen (N), % 0 to 0.050
0.070 to 0.2
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.010 to 0.020
0
Phosphorus (P), % 0
0 to 0.045
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98 to 99.52
0
Residuals, % 0 to 0.4
0