MakeItFrom.com
Menu (ESC)

Grade 34 Titanium vs. AISI 410S Stainless Steel

Grade 34 titanium belongs to the titanium alloys classification, while AISI 410S stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 34 titanium and the bottom bar is AISI 410S stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 20
25
Fatigue Strength, MPa 310
180
Poisson's Ratio 0.32
0.28
Reduction in Area, % 34
50
Shear Modulus, GPa 41
76
Shear Strength, MPa 320
310
Tensile Strength: Ultimate (UTS), MPa 510
480
Tensile Strength: Yield (Proof), MPa 450
250

Thermal Properties

Latent Heat of Fusion, J/g 420
270
Maximum Temperature: Mechanical, °C 320
740
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
30
Thermal Expansion, µm/m-K 8.7
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 55
7.0
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 33
1.9
Embodied Energy, MJ/kg 530
27
Embodied Water, L/kg 200
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
100
Resilience: Unit (Modulus of Resilience), kJ/m3 960
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
17
Strength to Weight: Bending, points 31
18
Thermal Diffusivity, mm2/s 8.4
8.1
Thermal Shock Resistance, points 39
17

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 0.1 to 0.2
11.5 to 13.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
83.8 to 88.5
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.35 to 0.55
0 to 0.6
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.010 to 0.020
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98 to 99.52
0
Residuals, % 0 to 0.4
0