MakeItFrom.com
Menu (ESC)

Grade 34 Titanium vs. CC753S Brass

Grade 34 titanium belongs to the titanium alloys classification, while CC753S brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 34 titanium and the bottom bar is CC753S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 20
17
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 41
40
Tensile Strength: Ultimate (UTS), MPa 510
340
Tensile Strength: Yield (Proof), MPa 450
170

Thermal Properties

Latent Heat of Fusion, J/g 420
170
Maximum Temperature: Mechanical, °C 320
120
Melting Completion (Liquidus), °C 1660
820
Melting Onset (Solidus), °C 1610
780
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 21
99
Thermal Expansion, µm/m-K 8.7
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
26
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
29

Otherwise Unclassified Properties

Base Metal Price, % relative 55
23
Density, g/cm3 4.5
8.1
Embodied Carbon, kg CO2/kg material 33
2.8
Embodied Energy, MJ/kg 530
47
Embodied Water, L/kg 200
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
47
Resilience: Unit (Modulus of Resilience), kJ/m3 960
140
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 31
12
Strength to Weight: Bending, points 31
13
Thermal Diffusivity, mm2/s 8.4
32
Thermal Shock Resistance, points 39
11

Alloy Composition

Aluminum (Al), % 0
0.4 to 0.8
Antimony (Sb), % 0
0 to 0.050
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0.1 to 0.2
0
Copper (Cu), % 0
56.8 to 60.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0.5 to 0.8
Lead (Pb), % 0
1.8 to 2.5
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0.35 to 0.55
0.5 to 1.2
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.010 to 0.020
0
Phosphorus (P), % 0
0 to 0.020
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
0 to 0.050
Tin (Sn), % 0
0 to 0.8
Titanium (Ti), % 98 to 99.52
0
Zinc (Zn), % 0
33.1 to 40
Residuals, % 0 to 0.4
0