Grade 34 Titanium vs. Grade 15 Titanium
Both grade 34 titanium and grade 15 titanium are titanium alloys. Both are furnished in the annealed condition. Their average alloy composition is basically identical.
For each property being compared, the top bar is grade 34 titanium and the bottom bar is grade 15 titanium.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 110 | |
110 |
Elongation at Break, % | 20 | |
20 |
Fatigue Strength, MPa | 310 | |
290 |
Poisson's Ratio | 0.32 | |
0.32 |
Reduction in Area, % | 34 | |
28 |
Shear Modulus, GPa | 41 | |
41 |
Shear Strength, MPa | 320 | |
340 |
Tensile Strength: Ultimate (UTS), MPa | 510 | |
540 |
Tensile Strength: Yield (Proof), MPa | 450 | |
430 |
Thermal Properties
Latent Heat of Fusion, J/g | 420 | |
420 |
Maximum Temperature: Mechanical, °C | 320 | |
320 |
Melting Completion (Liquidus), °C | 1660 | |
1660 |
Melting Onset (Solidus), °C | 1610 | |
1610 |
Specific Heat Capacity, J/kg-K | 540 | |
540 |
Thermal Conductivity, W/m-K | 21 | |
21 |
Thermal Expansion, µm/m-K | 8.7 | |
8.7 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 3.4 | |
3.4 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 6.7 | |
6.7 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 55 | |
37 |
Density, g/cm3 | 4.5 | |
4.5 |
Embodied Carbon, kg CO2/kg material | 33 | |
32 |
Embodied Energy, MJ/kg | 530 | |
520 |
Embodied Water, L/kg | 200 | |
210 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 100 | |
100 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 960 | |
870 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 35 | |
35 |
Strength to Weight: Axial, points | 31 | |
33 |
Strength to Weight: Bending, points | 31 | |
33 |
Thermal Diffusivity, mm2/s | 8.4 | |
8.4 |
Thermal Shock Resistance, points | 39 | |
41 |
Alloy Composition
Carbon (C), % | 0 to 0.080 | |
0 to 0.080 |
Chromium (Cr), % | 0.1 to 0.2 | |
0 |
Hydrogen (H), % | 0 to 0.015 | |
0 to 0.015 |
Iron (Fe), % | 0 to 0.3 | |
0 to 0.3 |
Nickel (Ni), % | 0.35 to 0.55 | |
0.4 to 0.6 |
Nitrogen (N), % | 0 to 0.050 | |
0 to 0.050 |
Oxygen (O), % | 0 to 0.35 | |
0 to 0.25 |
Palladium (Pd), % | 0.010 to 0.020 | |
0 |
Ruthenium (Ru), % | 0.020 to 0.040 | |
0.040 to 0.060 |
Titanium (Ti), % | 98 to 99.52 | |
98.2 to 99.56 |
Residuals, % | 0 | |
0 to 0.4 |