MakeItFrom.com
Menu (ESC)

Grade 34 Titanium vs. C87700 Bronze

Grade 34 titanium belongs to the titanium alloys classification, while C87700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 34 titanium and the bottom bar is C87700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 20
3.6
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
42
Tensile Strength: Ultimate (UTS), MPa 510
300
Tensile Strength: Yield (Proof), MPa 450
120

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
180
Melting Completion (Liquidus), °C 1660
980
Melting Onset (Solidus), °C 1610
900
Specific Heat Capacity, J/kg-K 540
400
Thermal Conductivity, W/m-K 21
120
Thermal Expansion, µm/m-K 8.7
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
45
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
48

Otherwise Unclassified Properties

Base Metal Price, % relative 55
29
Density, g/cm3 4.5
8.5
Embodied Carbon, kg CO2/kg material 33
2.7
Embodied Energy, MJ/kg 530
45
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
8.6
Resilience: Unit (Modulus of Resilience), kJ/m3 960
64
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 31
9.8
Strength to Weight: Bending, points 31
12
Thermal Diffusivity, mm2/s 8.4
34
Thermal Shock Resistance, points 39
11

Alloy Composition

Antimony (Sb), % 0
0 to 0.1
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0.1 to 0.2
0
Copper (Cu), % 0
87.5 to 90.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0
0 to 0.8
Nickel (Ni), % 0.35 to 0.55
0 to 0.25
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.010 to 0.020
0
Phosphorus (P), % 0
0 to 0.15
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
2.5 to 3.5
Tin (Sn), % 0
0 to 2.0
Titanium (Ti), % 98 to 99.52
0
Zinc (Zn), % 0
7.0 to 9.0
Residuals, % 0
0 to 0.8