MakeItFrom.com
Menu (ESC)

Grade 34 Titanium vs. C90800 Bronze

Grade 34 titanium belongs to the titanium alloys classification, while C90800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 34 titanium and the bottom bar is C90800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 20
13
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 41
40
Tensile Strength: Ultimate (UTS), MPa 510
330
Tensile Strength: Yield (Proof), MPa 450
170

Thermal Properties

Latent Heat of Fusion, J/g 420
190
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1660
990
Melting Onset (Solidus), °C 1610
870
Specific Heat Capacity, J/kg-K 540
370
Thermal Conductivity, W/m-K 21
68
Thermal Expansion, µm/m-K 8.7
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
11
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
11

Otherwise Unclassified Properties

Base Metal Price, % relative 55
36
Density, g/cm3 4.5
8.7
Embodied Carbon, kg CO2/kg material 33
3.8
Embodied Energy, MJ/kg 530
62
Embodied Water, L/kg 200
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
35
Resilience: Unit (Modulus of Resilience), kJ/m3 960
140
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 31
11
Strength to Weight: Bending, points 31
12
Thermal Diffusivity, mm2/s 8.4
21
Thermal Shock Resistance, points 39
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0.1 to 0.2
0
Copper (Cu), % 0
85.3 to 89
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.15
Lead (Pb), % 0
0 to 0.25
Nickel (Ni), % 0.35 to 0.55
0 to 0.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.010 to 0.020
0
Phosphorus (P), % 0
0 to 0.3
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
11 to 13
Titanium (Ti), % 98 to 99.52
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0 to 0.4
0