MakeItFrom.com
Menu (ESC)

Grade 34 Titanium vs. S32760 Stainless Steel

Grade 34 titanium belongs to the titanium alloys classification, while S32760 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 34 titanium and the bottom bar is S32760 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 20
28
Fatigue Strength, MPa 310
450
Poisson's Ratio 0.32
0.27
Reduction in Area, % 34
51
Shear Modulus, GPa 41
80
Shear Strength, MPa 320
550
Tensile Strength: Ultimate (UTS), MPa 510
850
Tensile Strength: Yield (Proof), MPa 450
620

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 8.7
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 55
22
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 33
4.1
Embodied Energy, MJ/kg 530
57
Embodied Water, L/kg 200
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
220
Resilience: Unit (Modulus of Resilience), kJ/m3 960
930
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
30
Strength to Weight: Bending, points 31
25
Thermal Diffusivity, mm2/s 8.4
4.0
Thermal Shock Resistance, points 39
23

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0.1 to 0.2
24 to 26
Copper (Cu), % 0
0.5 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
57.6 to 65.8
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0.35 to 0.55
6.0 to 8.0
Nitrogen (N), % 0 to 0.050
0.2 to 0.3
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.010 to 0.020
0
Phosphorus (P), % 0
0 to 0.030
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 98 to 99.52
0
Tungsten (W), % 0
0.5 to 1.0
Residuals, % 0 to 0.4
0