MakeItFrom.com
Menu (ESC)

Grade 34 Titanium vs. ZE41A Magnesium

Grade 34 titanium belongs to the titanium alloys classification, while ZE41A magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 34 titanium and the bottom bar is ZE41A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
45
Elongation at Break, % 20
3.3
Fatigue Strength, MPa 310
98
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
18
Shear Strength, MPa 320
150
Tensile Strength: Ultimate (UTS), MPa 510
210
Tensile Strength: Yield (Proof), MPa 450
140

Thermal Properties

Latent Heat of Fusion, J/g 420
330
Maximum Temperature: Mechanical, °C 320
150
Melting Completion (Liquidus), °C 1660
640
Melting Onset (Solidus), °C 1610
540
Specific Heat Capacity, J/kg-K 540
970
Thermal Conductivity, W/m-K 21
110
Thermal Expansion, µm/m-K 8.7
27

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
27
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
130

Otherwise Unclassified Properties

Base Metal Price, % relative 55
18
Density, g/cm3 4.5
1.9
Embodied Carbon, kg CO2/kg material 33
24
Embodied Energy, MJ/kg 530
170
Embodied Water, L/kg 200
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
6.1
Resilience: Unit (Modulus of Resilience), kJ/m3 960
220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
63
Strength to Weight: Axial, points 31
31
Strength to Weight: Bending, points 31
41
Thermal Diffusivity, mm2/s 8.4
59
Thermal Shock Resistance, points 39
12

Alloy Composition

Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0.1 to 0.2
0
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0
Magnesium (Mg), % 0
91.7 to 95.4
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0.35 to 0.55
0 to 0.010
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.010 to 0.020
0
Ruthenium (Ru), % 0.020 to 0.040
0
Titanium (Ti), % 98 to 99.52
0
Unspecified Rare Earths, % 0
0.75 to 1.8
Zinc (Zn), % 0
3.5 to 5.0
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.3