MakeItFrom.com
Menu (ESC)

Grade 35 Titanium vs. 5657 Aluminum

Grade 35 titanium belongs to the titanium alloys classification, while 5657 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 35 titanium and the bottom bar is 5657 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 5.6
6.6 to 15
Fatigue Strength, MPa 330
74 to 88
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
26
Shear Strength, MPa 580
92 to 110
Tensile Strength: Ultimate (UTS), MPa 1000
150 to 200
Tensile Strength: Yield (Proof), MPa 630
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 320
180
Melting Completion (Liquidus), °C 1630
660
Melting Onset (Solidus), °C 1580
640
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 7.4
210
Thermal Expansion, µm/m-K 9.3
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
54
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
180

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 4.6
2.7
Embodied Carbon, kg CO2/kg material 33
8.4
Embodied Energy, MJ/kg 530
160
Embodied Water, L/kg 170
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49
9.7 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
140 to 200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 61
15 to 20
Strength to Weight: Bending, points 49
23 to 28
Thermal Diffusivity, mm2/s 3.0
84
Thermal Shock Resistance, points 70
6.7 to 8.6

Alloy Composition

Aluminum (Al), % 4.0 to 5.0
98.5 to 99.4
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
0 to 0.1
Gallium (Ga), % 0
0 to 0.030
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.2 to 0.8
0 to 0.1
Magnesium (Mg), % 0
0.6 to 1.0
Manganese (Mn), % 0
0 to 0.030
Molybdenum (Mo), % 1.5 to 2.5
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Silicon (Si), % 0.2 to 0.4
0 to 0.080
Titanium (Ti), % 88.4 to 93
0
Vanadium (V), % 1.1 to 2.1
0 to 0.050
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.050