MakeItFrom.com
Menu (ESC)

Grade 35 Titanium vs. 7475 Aluminum

Grade 35 titanium belongs to the titanium alloys classification, while 7475 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 35 titanium and the bottom bar is 7475 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 5.6
10 to 12
Fatigue Strength, MPa 330
190 to 210
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 41
26
Shear Strength, MPa 580
320 to 350
Tensile Strength: Ultimate (UTS), MPa 1000
530 to 590
Tensile Strength: Yield (Proof), MPa 630
440 to 520

Thermal Properties

Latent Heat of Fusion, J/g 420
380
Maximum Temperature: Mechanical, °C 320
180
Melting Completion (Liquidus), °C 1630
640
Melting Onset (Solidus), °C 1580
480
Specific Heat Capacity, J/kg-K 550
870
Thermal Conductivity, W/m-K 7.4
140 to 160
Thermal Expansion, µm/m-K 9.3
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
33 to 42
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
98 to 120

Otherwise Unclassified Properties

Base Metal Price, % relative 37
10
Density, g/cm3 4.6
3.0
Embodied Carbon, kg CO2/kg material 33
8.2
Embodied Energy, MJ/kg 530
150
Embodied Water, L/kg 170
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49
53 to 68
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
1390 to 1920
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
46
Strength to Weight: Axial, points 61
49 to 55
Strength to Weight: Bending, points 49
48 to 52
Thermal Diffusivity, mm2/s 3.0
53 to 63
Thermal Shock Resistance, points 70
23 to 26

Alloy Composition

Aluminum (Al), % 4.0 to 5.0
88.6 to 91.6
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0.18 to 0.25
Copper (Cu), % 0
1.2 to 1.9
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.2 to 0.8
0 to 0.12
Magnesium (Mg), % 0
1.9 to 2.6
Manganese (Mn), % 0
0 to 0.060
Molybdenum (Mo), % 1.5 to 2.5
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Silicon (Si), % 0.2 to 0.4
0 to 0.1
Titanium (Ti), % 88.4 to 93
0 to 0.060
Vanadium (V), % 1.1 to 2.1
0
Zinc (Zn), % 0
5.1 to 6.2
Residuals, % 0
0 to 0.15