MakeItFrom.com
Menu (ESC)

Grade 35 Titanium vs. A360.0 Aluminum

Grade 35 titanium belongs to the titanium alloys classification, while A360.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 35 titanium and the bottom bar is A360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
72
Elongation at Break, % 5.6
1.6 to 5.0
Fatigue Strength, MPa 330
82 to 150
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
27
Shear Strength, MPa 580
180
Tensile Strength: Ultimate (UTS), MPa 1000
180 to 320
Tensile Strength: Yield (Proof), MPa 630
170 to 260

Thermal Properties

Latent Heat of Fusion, J/g 420
530
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1630
680
Melting Onset (Solidus), °C 1580
590
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 7.4
110
Thermal Expansion, µm/m-K 9.3
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
100

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 4.6
2.6
Embodied Carbon, kg CO2/kg material 33
7.8
Embodied Energy, MJ/kg 530
150
Embodied Water, L/kg 170
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49
4.6 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
190 to 470
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
53
Strength to Weight: Axial, points 61
19 to 34
Strength to Weight: Bending, points 49
27 to 39
Thermal Diffusivity, mm2/s 3.0
48
Thermal Shock Resistance, points 70
8.5 to 15

Alloy Composition

Aluminum (Al), % 4.0 to 5.0
85.8 to 90.6
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
0 to 0.6
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.2 to 0.8
0 to 1.3
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0
0 to 0.35
Molybdenum (Mo), % 1.5 to 2.5
0
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Silicon (Si), % 0.2 to 0.4
9.0 to 10
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 88.4 to 93
0
Vanadium (V), % 1.1 to 2.1
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25