MakeItFrom.com
Menu (ESC)

Grade 35 Titanium vs. EN 1.0411 Steel

Grade 35 titanium belongs to the titanium alloys classification, while EN 1.0411 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 35 titanium and the bottom bar is EN 1.0411 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 5.6
12 to 26
Fatigue Strength, MPa 330
200 to 320
Poisson's Ratio 0.32
0.29
Reduction in Area, % 23
60 to 74
Shear Modulus, GPa 41
73
Shear Strength, MPa 580
300 to 350
Tensile Strength: Ultimate (UTS), MPa 1000
420 to 570
Tensile Strength: Yield (Proof), MPa 630
270 to 480

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
400
Melting Completion (Liquidus), °C 1630
1460
Melting Onset (Solidus), °C 1580
1420
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 7.4
52
Thermal Expansion, µm/m-K 9.3
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 37
1.8
Density, g/cm3 4.6
7.9
Embodied Carbon, kg CO2/kg material 33
1.4
Embodied Energy, MJ/kg 530
18
Embodied Water, L/kg 170
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49
43 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
190 to 610
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 61
15 to 20
Strength to Weight: Bending, points 49
16 to 20
Thermal Diffusivity, mm2/s 3.0
14
Thermal Shock Resistance, points 70
13 to 18

Alloy Composition

Aluminum (Al), % 4.0 to 5.0
0.020 to 0.060
Carbon (C), % 0 to 0.080
0.18 to 0.22
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.2 to 0.8
98.7 to 99.1
Manganese (Mn), % 0
0.7 to 0.9
Molybdenum (Mo), % 1.5 to 2.5
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.2 to 0.4
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 88.4 to 93
0
Vanadium (V), % 1.1 to 2.1
0
Residuals, % 0 to 0.4
0