MakeItFrom.com
Menu (ESC)

Grade 35 Titanium vs. EN 1.4110 Stainless Steel

Grade 35 titanium belongs to the titanium alloys classification, while EN 1.4110 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 35 titanium and the bottom bar is EN 1.4110 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 5.6
11 to 14
Fatigue Strength, MPa 330
250 to 730
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 580
470 to 1030
Tensile Strength: Ultimate (UTS), MPa 1000
770 to 1720
Tensile Strength: Yield (Proof), MPa 630
430 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
790
Melting Completion (Liquidus), °C 1630
1440
Melting Onset (Solidus), °C 1580
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 7.4
30
Thermal Expansion, µm/m-K 9.3
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 37
8.0
Density, g/cm3 4.6
7.7
Embodied Carbon, kg CO2/kg material 33
2.3
Embodied Energy, MJ/kg 530
33
Embodied Water, L/kg 170
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49
90 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
480 to 4550
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 61
28 to 62
Strength to Weight: Bending, points 49
24 to 41
Thermal Diffusivity, mm2/s 3.0
8.1
Thermal Shock Resistance, points 70
27 to 60

Alloy Composition

Aluminum (Al), % 4.0 to 5.0
0
Carbon (C), % 0 to 0.080
0.48 to 0.6
Chromium (Cr), % 0
13 to 15
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.2 to 0.8
81.4 to 86
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 1.5 to 2.5
0.5 to 0.8
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 88.4 to 93
0
Vanadium (V), % 1.1 to 2.1
0 to 0.15
Residuals, % 0 to 0.4
0