MakeItFrom.com
Menu (ESC)

Grade 35 Titanium vs. CC752S Brass

Grade 35 titanium belongs to the titanium alloys classification, while CC752S brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 35 titanium and the bottom bar is CC752S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 5.6
8.4
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 41
40
Tensile Strength: Ultimate (UTS), MPa 1000
350
Tensile Strength: Yield (Proof), MPa 630
190

Thermal Properties

Latent Heat of Fusion, J/g 420
170
Maximum Temperature: Mechanical, °C 320
130
Melting Completion (Liquidus), °C 1630
840
Melting Onset (Solidus), °C 1580
800
Specific Heat Capacity, J/kg-K 550
380
Thermal Conductivity, W/m-K 7.4
110
Thermal Expansion, µm/m-K 9.3
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
28

Otherwise Unclassified Properties

Base Metal Price, % relative 37
24
Density, g/cm3 4.6
8.1
Embodied Carbon, kg CO2/kg material 33
2.7
Embodied Energy, MJ/kg 530
46
Embodied Water, L/kg 170
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49
25
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
180
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 61
12
Strength to Weight: Bending, points 49
13
Thermal Diffusivity, mm2/s 3.0
35
Thermal Shock Resistance, points 70
12

Alloy Composition

Aluminum (Al), % 4.0 to 5.0
0.3 to 0.7
Antimony (Sb), % 0
0 to 0.14
Arsenic (As), % 0
0.040 to 0.14
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
61.5 to 64.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.2 to 0.8
0 to 0.3
Lead (Pb), % 0
1.5 to 2.2
Manganese (Mn), % 0
0 to 0.1
Molybdenum (Mo), % 1.5 to 2.5
0
Nickel (Ni), % 0
0 to 0.2
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Silicon (Si), % 0.2 to 0.4
0 to 0.020
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 88.4 to 93
0
Vanadium (V), % 1.1 to 2.1
0
Zinc (Zn), % 0
31.5 to 36.7
Residuals, % 0 to 0.4
0