MakeItFrom.com
Menu (ESC)

Grade 35 Titanium vs. CC763S Brass

Grade 35 titanium belongs to the titanium alloys classification, while CC763S brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 35 titanium and the bottom bar is CC763S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 5.6
7.3
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 41
41
Tensile Strength: Ultimate (UTS), MPa 1000
490
Tensile Strength: Yield (Proof), MPa 630
270

Thermal Properties

Latent Heat of Fusion, J/g 420
190
Maximum Temperature: Mechanical, °C 320
140
Melting Completion (Liquidus), °C 1630
870
Melting Onset (Solidus), °C 1580
830
Specific Heat Capacity, J/kg-K 550
400
Thermal Expansion, µm/m-K 9.3
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
29
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
32

Otherwise Unclassified Properties

Base Metal Price, % relative 37
24
Density, g/cm3 4.6
8.0
Embodied Carbon, kg CO2/kg material 33
2.9
Embodied Energy, MJ/kg 530
49
Embodied Water, L/kg 170
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49
30
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
340
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 61
17
Strength to Weight: Bending, points 49
17
Thermal Shock Resistance, points 70
16

Alloy Composition

Aluminum (Al), % 4.0 to 5.0
1.0 to 2.5
Antimony (Sb), % 0
0 to 0.080
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
56.5 to 67
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.2 to 0.8
0.5 to 2.0
Lead (Pb), % 0
0 to 1.5
Manganese (Mn), % 0
1.0 to 3.5
Molybdenum (Mo), % 1.5 to 2.5
0
Nickel (Ni), % 0
0 to 2.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Silicon (Si), % 0.2 to 0.4
0 to 1.0
Tin (Sn), % 0
0 to 1.0
Titanium (Ti), % 88.4 to 93
0
Vanadium (V), % 1.1 to 2.1
0
Zinc (Zn), % 0
18.9 to 41
Residuals, % 0 to 0.4
0