MakeItFrom.com
Menu (ESC)

Grade 35 Titanium vs. C64700 Bronze

Grade 35 titanium belongs to the titanium alloys classification, while C64700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 35 titanium and the bottom bar is C64700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 5.6
9.0
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 41
44
Shear Strength, MPa 580
390
Tensile Strength: Ultimate (UTS), MPa 1000
660
Tensile Strength: Yield (Proof), MPa 630
560

Thermal Properties

Latent Heat of Fusion, J/g 420
220
Maximum Temperature: Mechanical, °C 320
200
Melting Completion (Liquidus), °C 1630
1090
Melting Onset (Solidus), °C 1580
1030
Specific Heat Capacity, J/kg-K 550
390
Thermal Conductivity, W/m-K 7.4
210
Thermal Expansion, µm/m-K 9.3
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
38
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
38

Otherwise Unclassified Properties

Base Metal Price, % relative 37
31
Density, g/cm3 4.6
8.9
Embodied Carbon, kg CO2/kg material 33
2.7
Embodied Energy, MJ/kg 530
43
Embodied Water, L/kg 170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49
57
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
1370
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 61
21
Strength to Weight: Bending, points 49
19
Thermal Diffusivity, mm2/s 3.0
59
Thermal Shock Resistance, points 70
24

Alloy Composition

Aluminum (Al), % 4.0 to 5.0
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
95.8 to 98
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.2 to 0.8
0 to 0.1
Lead (Pb), % 0
0 to 0.1
Molybdenum (Mo), % 1.5 to 2.5
0
Nickel (Ni), % 0
1.6 to 2.2
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Silicon (Si), % 0.2 to 0.4
0.4 to 0.8
Titanium (Ti), % 88.4 to 93
0
Vanadium (V), % 1.1 to 2.1
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5