MakeItFrom.com
Menu (ESC)

Grade 35 Titanium vs. C96800 Copper

Grade 35 titanium belongs to the titanium alloys classification, while C96800 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 35 titanium and the bottom bar is C96800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 5.6
3.4
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 41
46
Tensile Strength: Ultimate (UTS), MPa 1000
1010
Tensile Strength: Yield (Proof), MPa 630
860

Thermal Properties

Latent Heat of Fusion, J/g 420
220
Maximum Temperature: Mechanical, °C 320
220
Melting Completion (Liquidus), °C 1630
1120
Melting Onset (Solidus), °C 1580
1060
Specific Heat Capacity, J/kg-K 550
390
Thermal Conductivity, W/m-K 7.4
52
Thermal Expansion, µm/m-K 9.3
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
10

Otherwise Unclassified Properties

Base Metal Price, % relative 37
34
Density, g/cm3 4.6
8.9
Embodied Carbon, kg CO2/kg material 33
3.4
Embodied Energy, MJ/kg 530
52
Embodied Water, L/kg 170
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49
33
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
3000
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 61
32
Strength to Weight: Bending, points 49
25
Thermal Diffusivity, mm2/s 3.0
15
Thermal Shock Resistance, points 70
35

Alloy Composition

Aluminum (Al), % 4.0 to 5.0
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
87.1 to 90.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.2 to 0.8
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Manganese (Mn), % 0
0.050 to 0.3
Molybdenum (Mo), % 1.5 to 2.5
0
Nickel (Ni), % 0
9.5 to 10.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.0050
Silicon (Si), % 0.2 to 0.4
0
Sulfur (S), % 0
0 to 0.0025
Titanium (Ti), % 88.4 to 93
0
Vanadium (V), % 1.1 to 2.1
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5