MakeItFrom.com
Menu (ESC)

Grade 35 Titanium vs. S44627 Stainless Steel

Grade 35 titanium belongs to the titanium alloys classification, while S44627 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 35 titanium and the bottom bar is S44627 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 5.6
24
Fatigue Strength, MPa 330
200
Poisson's Ratio 0.32
0.27
Reduction in Area, % 23
51
Shear Modulus, GPa 41
80
Shear Strength, MPa 580
310
Tensile Strength: Ultimate (UTS), MPa 1000
490
Tensile Strength: Yield (Proof), MPa 630
300

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1630
1440
Melting Onset (Solidus), °C 1580
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 7.4
17
Thermal Expansion, µm/m-K 9.3
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 37
14
Density, g/cm3 4.6
7.7
Embodied Carbon, kg CO2/kg material 33
2.9
Embodied Energy, MJ/kg 530
41
Embodied Water, L/kg 170
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49
100
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
220
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 61
18
Strength to Weight: Bending, points 49
18
Thermal Diffusivity, mm2/s 3.0
4.6
Thermal Shock Resistance, points 70
16

Alloy Composition

Aluminum (Al), % 4.0 to 5.0
0
Carbon (C), % 0 to 0.080
0 to 0.010
Chromium (Cr), % 0
25 to 27.5
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.2 to 0.8
69.2 to 74.2
Manganese (Mn), % 0
0 to 0.4
Molybdenum (Mo), % 1.5 to 2.5
0.75 to 1.5
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.050 to 0.2
Nitrogen (N), % 0 to 0.050
0 to 0.015
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.2 to 0.4
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 88.4 to 93
0
Vanadium (V), % 1.1 to 2.1
0
Residuals, % 0 to 0.4
0