MakeItFrom.com
Menu (ESC)

Grade 36 Titanium vs. 5019 Aluminum

Grade 36 titanium belongs to the titanium alloys classification, while 5019 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 36 titanium and the bottom bar is 5019 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 11
2.2 to 18
Fatigue Strength, MPa 300
100 to 160
Poisson's Ratio 0.36
0.33
Shear Modulus, GPa 39
26
Shear Strength, MPa 320
170 to 210
Tensile Strength: Ultimate (UTS), MPa 530
280 to 360
Tensile Strength: Yield (Proof), MPa 520
120 to 300

Thermal Properties

Latent Heat of Fusion, J/g 370
400
Maximum Temperature: Mechanical, °C 320
180
Melting Completion (Liquidus), °C 2020
640
Melting Onset (Solidus), °C 1950
540
Specific Heat Capacity, J/kg-K 420
900
Thermal Expansion, µm/m-K 8.1
24

Otherwise Unclassified Properties

Density, g/cm3 6.3
2.7
Embodied Carbon, kg CO2/kg material 58
9.0
Embodied Energy, MJ/kg 920
150
Embodied Water, L/kg 130
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
7.6 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 1260
110 to 650
Stiffness to Weight: Axial, points 9.3
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 23
29 to 38
Strength to Weight: Bending, points 23
35 to 42
Thermal Shock Resistance, points 45
13 to 16

Alloy Composition

Aluminum (Al), % 0
91.5 to 95.3
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.0035
0
Iron (Fe), % 0 to 0.030
0 to 0.5
Magnesium (Mg), % 0
4.5 to 5.6
Manganese (Mn), % 0
0.1 to 0.6
Niobium (Nb), % 42 to 47
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.16
0
Silicon (Si), % 0
0 to 0.4
Titanium (Ti), % 52.3 to 58
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15