MakeItFrom.com
Menu (ESC)

Grade 36 Titanium vs. 7108A Aluminum

Grade 36 titanium belongs to the titanium alloys classification, while 7108A aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 36 titanium and the bottom bar is 7108A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 11
11 to 13
Fatigue Strength, MPa 300
120 to 130
Poisson's Ratio 0.36
0.33
Shear Modulus, GPa 39
26
Shear Strength, MPa 320
210
Tensile Strength: Ultimate (UTS), MPa 530
350
Tensile Strength: Yield (Proof), MPa 520
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 370
380
Maximum Temperature: Mechanical, °C 320
210
Melting Completion (Liquidus), °C 2020
630
Melting Onset (Solidus), °C 1950
520
Specific Heat Capacity, J/kg-K 420
870
Thermal Expansion, µm/m-K 8.1
24

Otherwise Unclassified Properties

Density, g/cm3 6.3
2.9
Embodied Carbon, kg CO2/kg material 58
8.3
Embodied Energy, MJ/kg 920
150
Embodied Water, L/kg 130
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
38 to 44
Resilience: Unit (Modulus of Resilience), kJ/m3 1260
610 to 640
Stiffness to Weight: Axial, points 9.3
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 23
33 to 34
Strength to Weight: Bending, points 23
38
Thermal Shock Resistance, points 45
15 to 16

Alloy Composition

Aluminum (Al), % 0
91.6 to 94.4
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 0
0 to 0.040
Copper (Cu), % 0
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Hydrogen (H), % 0 to 0.0035
0
Iron (Fe), % 0 to 0.030
0 to 0.3
Magnesium (Mg), % 0
0.7 to 1.5
Manganese (Mn), % 0
0 to 0.050
Niobium (Nb), % 42 to 47
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.16
0
Silicon (Si), % 0
0 to 0.2
Titanium (Ti), % 52.3 to 58
0 to 0.030
Zinc (Zn), % 0
4.8 to 5.8
Zirconium (Zr), % 0
0.15 to 0.25
Residuals, % 0
0 to 0.15