MakeItFrom.com
Menu (ESC)

Grade 36 Titanium vs. A356.0 Aluminum

Grade 36 titanium belongs to the titanium alloys classification, while A356.0 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 36 titanium and the bottom bar is A356.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 11
3.0 to 6.0
Fatigue Strength, MPa 300
50 to 90
Poisson's Ratio 0.36
0.33
Shear Modulus, GPa 39
26
Tensile Strength: Ultimate (UTS), MPa 530
160 to 270
Tensile Strength: Yield (Proof), MPa 520
83 to 200

Thermal Properties

Latent Heat of Fusion, J/g 370
500
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 2020
610
Melting Onset (Solidus), °C 1950
570
Specific Heat Capacity, J/kg-K 420
900
Thermal Expansion, µm/m-K 8.1
21

Otherwise Unclassified Properties

Density, g/cm3 6.3
2.6
Embodied Carbon, kg CO2/kg material 58
8.0
Embodied Energy, MJ/kg 920
150
Embodied Water, L/kg 130
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
4.8 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 1260
49 to 300
Stiffness to Weight: Axial, points 9.3
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 23
17 to 29
Strength to Weight: Bending, points 23
25 to 36
Thermal Shock Resistance, points 45
7.6 to 13

Alloy Composition

Aluminum (Al), % 0
91.1 to 93.3
Carbon (C), % 0 to 0.030
0
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.0035
0
Iron (Fe), % 0 to 0.030
0 to 0.2
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0
0 to 0.1
Niobium (Nb), % 42 to 47
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.16
0
Silicon (Si), % 0
6.5 to 7.5
Titanium (Ti), % 52.3 to 58
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15