MakeItFrom.com
Menu (ESC)

Grade 36 Titanium vs. AISI 444 Stainless Steel

Grade 36 titanium belongs to the titanium alloys classification, while AISI 444 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is grade 36 titanium and the bottom bar is AISI 444 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
23
Fatigue Strength, MPa 300
210
Poisson's Ratio 0.36
0.28
Shear Modulus, GPa 39
78
Shear Strength, MPa 320
300
Tensile Strength: Ultimate (UTS), MPa 530
470
Tensile Strength: Yield (Proof), MPa 520
310

Thermal Properties

Latent Heat of Fusion, J/g 370
290
Maximum Temperature: Mechanical, °C 320
930
Melting Completion (Liquidus), °C 2020
1460
Melting Onset (Solidus), °C 1950
1420
Specific Heat Capacity, J/kg-K 420
480
Thermal Expansion, µm/m-K 8.1
10

Otherwise Unclassified Properties

Density, g/cm3 6.3
7.7
Embodied Carbon, kg CO2/kg material 58
3.4
Embodied Energy, MJ/kg 920
47
Embodied Water, L/kg 130
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
95
Resilience: Unit (Modulus of Resilience), kJ/m3 1260
240
Stiffness to Weight: Axial, points 9.3
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 23
17
Strength to Weight: Bending, points 23
17
Thermal Shock Resistance, points 45
16

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.025
Chromium (Cr), % 0
17.5 to 19.5
Hydrogen (H), % 0 to 0.0035
0
Iron (Fe), % 0 to 0.030
73.3 to 80.8
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 42 to 47
0.2 to 0.8
Nitrogen (N), % 0 to 0.030
0 to 0.035
Oxygen (O), % 0 to 0.16
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 52.3 to 58
0.2 to 0.8
Residuals, % 0 to 0.4
0