MakeItFrom.com
Menu (ESC)

Grade 36 Titanium vs. AWS ER90S-B9

Grade 36 titanium belongs to the titanium alloys classification, while AWS ER90S-B9 belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is grade 36 titanium and the bottom bar is AWS ER90S-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
18
Poisson's Ratio 0.36
0.28
Shear Modulus, GPa 39
75
Tensile Strength: Ultimate (UTS), MPa 530
690
Tensile Strength: Yield (Proof), MPa 520
470

Thermal Properties

Latent Heat of Fusion, J/g 370
270
Melting Completion (Liquidus), °C 2020
1450
Melting Onset (Solidus), °C 1950
1410
Specific Heat Capacity, J/kg-K 420
470
Thermal Expansion, µm/m-K 8.1
13

Otherwise Unclassified Properties

Density, g/cm3 6.3
7.8
Embodied Carbon, kg CO2/kg material 58
2.6
Embodied Energy, MJ/kg 920
37
Embodied Water, L/kg 130
91

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1260
570
Stiffness to Weight: Axial, points 9.3
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 23
25
Strength to Weight: Bending, points 23
22
Thermal Shock Resistance, points 45
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0 to 0.030
0.070 to 0.13
Chromium (Cr), % 0
8.0 to 10.5
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.0035
0
Iron (Fe), % 0 to 0.030
84.4 to 90.7
Manganese (Mn), % 0
0 to 1.2
Molybdenum (Mo), % 0
0.85 to 1.2
Nickel (Ni), % 0
0 to 0.8
Niobium (Nb), % 42 to 47
0.020 to 0.1
Nitrogen (N), % 0 to 0.030
0.030 to 0.070
Oxygen (O), % 0 to 0.16
0
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0.15 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 52.3 to 58
0
Vanadium (V), % 0
0.15 to 0.3
Residuals, % 0
0 to 0.5