MakeItFrom.com
Menu (ESC)

Grade 36 Titanium vs. B535.0 Aluminum

Grade 36 titanium belongs to the titanium alloys classification, while B535.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 36 titanium and the bottom bar is B535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
66
Elongation at Break, % 11
10
Fatigue Strength, MPa 300
62
Poisson's Ratio 0.36
0.33
Shear Modulus, GPa 39
25
Shear Strength, MPa 320
210
Tensile Strength: Ultimate (UTS), MPa 530
260
Tensile Strength: Yield (Proof), MPa 520
130

Thermal Properties

Latent Heat of Fusion, J/g 370
390
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 2020
630
Melting Onset (Solidus), °C 1950
550
Specific Heat Capacity, J/kg-K 420
910
Thermal Expansion, µm/m-K 8.1
25

Otherwise Unclassified Properties

Density, g/cm3 6.3
2.6
Embodied Carbon, kg CO2/kg material 58
9.4
Embodied Energy, MJ/kg 920
160
Embodied Water, L/kg 130
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
22
Resilience: Unit (Modulus of Resilience), kJ/m3 1260
130
Stiffness to Weight: Axial, points 9.3
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 23
28
Strength to Weight: Bending, points 23
35
Thermal Shock Resistance, points 45
11

Alloy Composition

Aluminum (Al), % 0
91.7 to 93.4
Carbon (C), % 0 to 0.030
0
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.0035
0
Iron (Fe), % 0 to 0.030
0 to 0.15
Magnesium (Mg), % 0
6.5 to 7.5
Manganese (Mn), % 0
0 to 0.050
Niobium (Nb), % 42 to 47
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.16
0
Silicon (Si), % 0
0 to 0.15
Titanium (Ti), % 52.3 to 58
0.1 to 0.25
Residuals, % 0
0 to 0.15