MakeItFrom.com
Menu (ESC)

Grade 36 Titanium vs. EN 1.3576 Steel

Grade 36 titanium belongs to the titanium alloys classification, while EN 1.3576 steel belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is grade 36 titanium and the bottom bar is EN 1.3576 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Poisson's Ratio 0.36
0.29
Shear Modulus, GPa 39
73
Tensile Strength: Ultimate (UTS), MPa 530
490 to 1420

Thermal Properties

Latent Heat of Fusion, J/g 370
250
Maximum Temperature: Mechanical, °C 320
420
Melting Completion (Liquidus), °C 2020
1460
Melting Onset (Solidus), °C 1950
1420
Specific Heat Capacity, J/kg-K 420
470
Thermal Expansion, µm/m-K 8.1
13

Otherwise Unclassified Properties

Density, g/cm3 6.3
7.9
Embodied Carbon, kg CO2/kg material 58
1.7
Embodied Energy, MJ/kg 920
22
Embodied Water, L/kg 130
53

Common Calculations

Stiffness to Weight: Axial, points 9.3
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 23
17 to 50
Strength to Weight: Bending, points 23
17 to 36
Thermal Shock Resistance, points 45
14 to 42

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0 to 0.030
0.17 to 0.23
Chromium (Cr), % 0
0.35 to 0.65
Copper (Cu), % 0
0 to 0.3
Hydrogen (H), % 0 to 0.0035
0
Iron (Fe), % 0 to 0.030
95.5 to 97.5
Manganese (Mn), % 0
0.4 to 0.7
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0
1.6 to 2.0
Niobium (Nb), % 42 to 47
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.16
0 to 0.0020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 52.3 to 58
0
Residuals, % 0 to 0.4
0