MakeItFrom.com
Menu (ESC)

Grade 36 Titanium vs. EN 1.4523 Stainless Steel

Grade 36 titanium belongs to the titanium alloys classification, while EN 1.4523 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is grade 36 titanium and the bottom bar is EN 1.4523 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
17
Fatigue Strength, MPa 300
190
Poisson's Ratio 0.36
0.28
Shear Modulus, GPa 39
78
Shear Strength, MPa 320
320
Tensile Strength: Ultimate (UTS), MPa 530
520
Tensile Strength: Yield (Proof), MPa 520
320

Thermal Properties

Latent Heat of Fusion, J/g 370
290
Maximum Temperature: Mechanical, °C 320
920
Melting Completion (Liquidus), °C 2020
1450
Melting Onset (Solidus), °C 1950
1410
Specific Heat Capacity, J/kg-K 420
480
Thermal Expansion, µm/m-K 8.1
10

Otherwise Unclassified Properties

Density, g/cm3 6.3
7.7
Embodied Carbon, kg CO2/kg material 58
2.9
Embodied Energy, MJ/kg 920
40
Embodied Water, L/kg 130
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
77
Resilience: Unit (Modulus of Resilience), kJ/m3 1260
260
Stiffness to Weight: Axial, points 9.3
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 23
18
Strength to Weight: Bending, points 23
18
Thermal Shock Resistance, points 45
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 0
17.5 to 19
Hydrogen (H), % 0 to 0.0035
0
Iron (Fe), % 0 to 0.030
75.7 to 80.2
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
2.0 to 2.5
Niobium (Nb), % 42 to 47
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.16
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Titanium (Ti), % 52.3 to 58
0.15 to 0.8
Residuals, % 0 to 0.4
0