MakeItFrom.com
Menu (ESC)

Grade 36 Titanium vs. EN 1.4736 Stainless Steel

Grade 36 titanium belongs to the titanium alloys classification, while EN 1.4736 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is grade 36 titanium and the bottom bar is EN 1.4736 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
28
Fatigue Strength, MPa 300
230
Poisson's Ratio 0.36
0.28
Shear Modulus, GPa 39
76
Shear Strength, MPa 320
370
Tensile Strength: Ultimate (UTS), MPa 530
580
Tensile Strength: Yield (Proof), MPa 520
310

Thermal Properties

Latent Heat of Fusion, J/g 370
290
Maximum Temperature: Mechanical, °C 320
1000
Melting Completion (Liquidus), °C 2020
1420
Melting Onset (Solidus), °C 1950
1380
Specific Heat Capacity, J/kg-K 420
490
Thermal Expansion, µm/m-K 8.1
10

Otherwise Unclassified Properties

Density, g/cm3 6.3
7.6
Embodied Carbon, kg CO2/kg material 58
2.4
Embodied Energy, MJ/kg 920
35
Embodied Water, L/kg 130
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
140
Resilience: Unit (Modulus of Resilience), kJ/m3 1260
250
Stiffness to Weight: Axial, points 9.3
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 23
21
Strength to Weight: Bending, points 23
20
Thermal Shock Resistance, points 45
21

Alloy Composition

Aluminum (Al), % 0
1.7 to 2.1
Carbon (C), % 0 to 0.030
0 to 0.040
Chromium (Cr), % 0
17 to 18
Hydrogen (H), % 0 to 0.0035
0
Iron (Fe), % 0 to 0.030
77 to 81.1
Manganese (Mn), % 0
0 to 1.0
Niobium (Nb), % 42 to 47
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.16
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 52.3 to 58
0.2 to 0.8
Residuals, % 0 to 0.4
0