MakeItFrom.com
Menu (ESC)

Grade 36 Titanium vs. EN AC-42200 Aluminum

Grade 36 titanium belongs to the titanium alloys classification, while EN AC-42200 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 36 titanium and the bottom bar is EN AC-42200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 11
3.0 to 6.7
Fatigue Strength, MPa 300
86 to 90
Poisson's Ratio 0.36
0.33
Shear Modulus, GPa 39
26
Tensile Strength: Ultimate (UTS), MPa 530
320
Tensile Strength: Yield (Proof), MPa 520
240 to 260

Thermal Properties

Latent Heat of Fusion, J/g 370
500
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 2020
610
Melting Onset (Solidus), °C 1950
600
Specific Heat Capacity, J/kg-K 420
910
Thermal Expansion, µm/m-K 8.1
22

Otherwise Unclassified Properties

Density, g/cm3 6.3
2.6
Embodied Carbon, kg CO2/kg material 58
8.0
Embodied Energy, MJ/kg 920
150
Embodied Water, L/kg 130
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
9.0 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 1260
410 to 490
Stiffness to Weight: Axial, points 9.3
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 23
34 to 35
Strength to Weight: Bending, points 23
40 to 41
Thermal Shock Resistance, points 45
15

Alloy Composition

Aluminum (Al), % 0
91 to 93.1
Carbon (C), % 0 to 0.030
0
Copper (Cu), % 0
0 to 0.050
Hydrogen (H), % 0 to 0.0035
0
Iron (Fe), % 0 to 0.030
0 to 0.19
Magnesium (Mg), % 0
0.45 to 0.7
Manganese (Mn), % 0
0 to 0.1
Niobium (Nb), % 42 to 47
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.16
0
Silicon (Si), % 0
6.5 to 7.5
Titanium (Ti), % 52.3 to 58
0 to 0.25
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1