MakeItFrom.com
Menu (ESC)

Grade 36 Titanium vs. CC498K Bronze

Grade 36 titanium belongs to the titanium alloys classification, while CC498K bronze belongs to the copper alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is grade 36 titanium and the bottom bar is CC498K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11
14
Poisson's Ratio 0.36
0.34
Shear Modulus, GPa 39
41
Tensile Strength: Ultimate (UTS), MPa 530
260
Tensile Strength: Yield (Proof), MPa 520
130

Thermal Properties

Latent Heat of Fusion, J/g 370
190
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 2020
1000
Melting Onset (Solidus), °C 1950
920
Specific Heat Capacity, J/kg-K 420
370
Thermal Expansion, µm/m-K 8.1
18

Otherwise Unclassified Properties

Density, g/cm3 6.3
8.8
Embodied Carbon, kg CO2/kg material 58
3.2
Embodied Energy, MJ/kg 920
52
Embodied Water, L/kg 130
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
30
Resilience: Unit (Modulus of Resilience), kJ/m3 1260
72
Stiffness to Weight: Axial, points 9.3
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 23
8.1
Strength to Weight: Bending, points 23
10
Thermal Shock Resistance, points 45
9.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.030
0
Copper (Cu), % 0
85 to 90
Hydrogen (H), % 0 to 0.0035
0
Iron (Fe), % 0 to 0.030
0 to 0.25
Lead (Pb), % 0
1.0 to 2.0
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 42 to 47
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.16
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0
5.5 to 6.5
Titanium (Ti), % 52.3 to 58
0
Zinc (Zn), % 0
3.0 to 5.0
Residuals, % 0 to 0.4
0