MakeItFrom.com
Menu (ESC)

Grade 36 Titanium vs. Sintered 6061 Aluminum

Grade 36 titanium belongs to the titanium alloys classification, while sintered 6061 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 36 titanium and the bottom bar is sintered 6061 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 11
0.5 to 6.0
Fatigue Strength, MPa 300
32 to 62
Poisson's Ratio 0.36
0.33
Shear Modulus, GPa 39
25
Tensile Strength: Ultimate (UTS), MPa 530
83 to 210
Tensile Strength: Yield (Proof), MPa 520
62 to 190

Thermal Properties

Latent Heat of Fusion, J/g 370
400
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 2020
640
Melting Onset (Solidus), °C 1950
610
Specific Heat Capacity, J/kg-K 420
900
Thermal Expansion, µm/m-K 8.1
23

Otherwise Unclassified Properties

Density, g/cm3 6.3
2.7
Embodied Carbon, kg CO2/kg material 58
8.3
Embodied Energy, MJ/kg 920
150
Embodied Water, L/kg 130
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
0.68 to 7.0
Resilience: Unit (Modulus of Resilience), kJ/m3 1260
28 to 280
Stiffness to Weight: Axial, points 9.3
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 23
8.6 to 21
Strength to Weight: Bending, points 23
16 to 29
Thermal Shock Resistance, points 45
3.8 to 9.4

Alloy Composition

Aluminum (Al), % 0
96 to 99.4
Carbon (C), % 0 to 0.030
0
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.0035
0
Iron (Fe), % 0 to 0.030
0
Magnesium (Mg), % 0
0.4 to 1.2
Niobium (Nb), % 42 to 47
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.16
0
Silicon (Si), % 0
0.2 to 0.8
Titanium (Ti), % 52.3 to 58
0
Residuals, % 0
0 to 1.5