MakeItFrom.com
Menu (ESC)

Grade 36 Titanium vs. C52100 Bronze

Grade 36 titanium belongs to the titanium alloys classification, while C52100 bronze belongs to the copper alloys. There are 19 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is grade 36 titanium and the bottom bar is C52100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Poisson's Ratio 0.36
0.34
Shear Modulus, GPa 39
41
Tensile Strength: Ultimate (UTS), MPa 530
380 to 800

Thermal Properties

Latent Heat of Fusion, J/g 370
200
Maximum Temperature: Mechanical, °C 320
180
Melting Completion (Liquidus), °C 2020
1030
Melting Onset (Solidus), °C 1950
880
Specific Heat Capacity, J/kg-K 420
370
Thermal Expansion, µm/m-K 8.1
18

Otherwise Unclassified Properties

Density, g/cm3 6.3
8.8
Embodied Carbon, kg CO2/kg material 58
3.4
Embodied Energy, MJ/kg 920
55
Embodied Water, L/kg 130
370

Common Calculations

Stiffness to Weight: Axial, points 9.3
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 23
12 to 25
Strength to Weight: Bending, points 23
13 to 22
Thermal Shock Resistance, points 45
14 to 28

Alloy Composition

Carbon (C), % 0 to 0.030
0
Copper (Cu), % 0
89.8 to 93
Hydrogen (H), % 0 to 0.0035
0
Iron (Fe), % 0 to 0.030
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Niobium (Nb), % 42 to 47
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.16
0
Phosphorus (P), % 0
0.030 to 0.35
Tin (Sn), % 0
7.0 to 9.0
Titanium (Ti), % 52.3 to 58
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5