MakeItFrom.com
Menu (ESC)

Grade 36 Titanium vs. C62300 Bronze

Grade 36 titanium belongs to the titanium alloys classification, while C62300 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 36 titanium and the bottom bar is C62300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11
18 to 32
Poisson's Ratio 0.36
0.34
Shear Modulus, GPa 39
43
Shear Strength, MPa 320
360 to 390
Tensile Strength: Ultimate (UTS), MPa 530
570 to 630
Tensile Strength: Yield (Proof), MPa 520
230 to 310

Thermal Properties

Latent Heat of Fusion, J/g 370
230
Maximum Temperature: Mechanical, °C 320
220
Melting Completion (Liquidus), °C 2020
1050
Melting Onset (Solidus), °C 1950
1040
Specific Heat Capacity, J/kg-K 420
440
Thermal Expansion, µm/m-K 8.1
18

Otherwise Unclassified Properties

Density, g/cm3 6.3
8.3
Embodied Carbon, kg CO2/kg material 58
3.1
Embodied Energy, MJ/kg 920
52
Embodied Water, L/kg 130
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
95 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 1260
240 to 430
Stiffness to Weight: Axial, points 9.3
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 23
19 to 21
Strength to Weight: Bending, points 23
18 to 20
Thermal Shock Resistance, points 45
20 to 22

Alloy Composition

Aluminum (Al), % 0
8.5 to 10
Carbon (C), % 0 to 0.030
0
Copper (Cu), % 0
83.2 to 89.5
Hydrogen (H), % 0 to 0.0035
0
Iron (Fe), % 0 to 0.030
2.0 to 4.0
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 42 to 47
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.16
0
Silicon (Si), % 0
0 to 0.25
Tin (Sn), % 0
0 to 0.6
Titanium (Ti), % 52.3 to 58
0
Residuals, % 0
0 to 0.5