MakeItFrom.com
Menu (ESC)

Grade 36 Titanium vs. C93900 Bronze

Grade 36 titanium belongs to the titanium alloys classification, while C93900 bronze belongs to the copper alloys. There are 23 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade 36 titanium and the bottom bar is C93900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
95
Elongation at Break, % 11
5.6
Poisson's Ratio 0.36
0.36
Shear Modulus, GPa 39
35
Tensile Strength: Ultimate (UTS), MPa 530
190
Tensile Strength: Yield (Proof), MPa 520
130

Thermal Properties

Latent Heat of Fusion, J/g 370
170
Maximum Temperature: Mechanical, °C 320
140
Melting Completion (Liquidus), °C 2020
940
Melting Onset (Solidus), °C 1950
850
Specific Heat Capacity, J/kg-K 420
340
Thermal Expansion, µm/m-K 8.1
19

Otherwise Unclassified Properties

Density, g/cm3 6.3
9.1
Embodied Carbon, kg CO2/kg material 58
3.0
Embodied Energy, MJ/kg 920
49
Embodied Water, L/kg 130
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
9.5
Resilience: Unit (Modulus of Resilience), kJ/m3 1260
83
Stiffness to Weight: Axial, points 9.3
5.8
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 23
5.9
Strength to Weight: Bending, points 23
8.1
Thermal Shock Resistance, points 45
7.5

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0 to 0.030
0
Copper (Cu), % 0
76.5 to 79.5
Hydrogen (H), % 0 to 0.0035
0
Iron (Fe), % 0 to 0.030
0 to 0.4
Lead (Pb), % 0
14 to 18
Nickel (Ni), % 0
0 to 0.8
Niobium (Nb), % 42 to 47
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.16
0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
5.0 to 7.0
Titanium (Ti), % 52.3 to 58
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 1.1