MakeItFrom.com
Menu (ESC)

Grade 360 Molybdenum vs. C355.0 Aluminum

Grade 360 molybdenum belongs to the otherwise unclassified metals classification, while C355.0 aluminum belongs to the aluminum alloys. There are 20 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 360 molybdenum and the bottom bar is C355.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 310
70
Elongation at Break, % 6.3 to 17
2.7 to 3.8
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 120
26
Tensile Strength: Ultimate (UTS), MPa 430 to 620
290 to 310
Tensile Strength: Yield (Proof), MPa 270 to 530
200 to 230

Thermal Properties

Latent Heat of Fusion, J/g 370
470
Specific Heat Capacity, J/kg-K 250
900
Thermal Expansion, µm/m-K 7.0
22

Otherwise Unclassified Properties

Density, g/cm3 10
2.7
Embodied Carbon, kg CO2/kg material 28
8.0
Embodied Energy, MJ/kg 330
150
Embodied Water, L/kg 360
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 64
7.5 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 450
290 to 380
Stiffness to Weight: Axial, points 17
14
Stiffness to Weight: Bending, points 22
51
Strength to Weight: Axial, points 12 to 17
30 to 32
Strength to Weight: Bending, points 12 to 16
36 to 37
Thermal Shock Resistance, points 14 to 21
13 to 14

Alloy Composition

Aluminum (Al), % 0
91.7 to 94.1
Carbon (C), % 0 to 0.030
0
Copper (Cu), % 0
1.0 to 1.5
Iron (Fe), % 0 to 0.010
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0
0 to 0.1
Molybdenum (Mo), % 99.9 to 100
0
Nickel (Ni), % 0 to 0.0020
0
Nitrogen (N), % 0 to 0.0020
0
Oxygen (O), % 0 to 0.0015
0
Silicon (Si), % 0 to 0.010
4.5 to 5.5
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15