MakeItFrom.com
Menu (ESC)

Grade 37 Titanium vs. 358.0 Aluminum

Grade 37 titanium belongs to the titanium alloys classification, while 358.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 37 titanium and the bottom bar is 358.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 22
3.5 to 6.0
Fatigue Strength, MPa 170
100 to 110
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
27
Shear Strength, MPa 240
300 to 320
Tensile Strength: Ultimate (UTS), MPa 390
350 to 370
Tensile Strength: Yield (Proof), MPa 250
290 to 320

Thermal Properties

Latent Heat of Fusion, J/g 420
520
Maximum Temperature: Mechanical, °C 310
170
Melting Completion (Liquidus), °C 1650
600
Melting Onset (Solidus), °C 1600
560
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 21
150
Thermal Expansion, µm/m-K 8.9
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
36
Electrical Conductivity: Equal Weight (Specific), % IACS 6.8
130

Otherwise Unclassified Properties

Base Metal Price, % relative 36
19
Density, g/cm3 4.5
2.6
Embodied Carbon, kg CO2/kg material 31
8.7
Embodied Energy, MJ/kg 500
160
Embodied Water, L/kg 120
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
12 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 280
590 to 710
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
53
Strength to Weight: Axial, points 24
37 to 39
Strength to Weight: Bending, points 26
42 to 44
Thermal Diffusivity, mm2/s 8.4
63
Thermal Shock Resistance, points 29
16 to 17

Alloy Composition

Aluminum (Al), % 1.0 to 2.0
89.1 to 91.8
Beryllium (Be), % 0
0.1 to 0.3
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.3
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0
0 to 0.2
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Silicon (Si), % 0
7.6 to 8.6
Titanium (Ti), % 96.9 to 99
0.1 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15