MakeItFrom.com
Menu (ESC)

Grade 37 Titanium vs. AISI 316L Stainless Steel

Grade 37 titanium belongs to the titanium alloys classification, while AISI 316L stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 37 titanium and the bottom bar is AISI 316L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22
9.0 to 50
Fatigue Strength, MPa 170
170 to 450
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
78
Shear Strength, MPa 240
370 to 690
Tensile Strength: Ultimate (UTS), MPa 390
530 to 1160
Tensile Strength: Yield (Proof), MPa 250
190 to 870

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 310
870
Melting Completion (Liquidus), °C 1650
1400
Melting Onset (Solidus), °C 1600
1380
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 8.9
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.8
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
19
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 31
3.9
Embodied Energy, MJ/kg 500
53
Embodied Water, L/kg 120
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
77 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 280
93 to 1880
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
19 to 41
Strength to Weight: Bending, points 26
18 to 31
Thermal Diffusivity, mm2/s 8.4
4.1
Thermal Shock Resistance, points 29
12 to 25

Alloy Composition

Aluminum (Al), % 1.0 to 2.0
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
16 to 18
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
62 to 72
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Nitrogen (N), % 0 to 0.030
0 to 0.1
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 96.9 to 99
0
Residuals, % 0 to 0.4
0