MakeItFrom.com
Menu (ESC)

Grade 37 Titanium vs. AISI 420 Stainless Steel

Grade 37 titanium belongs to the titanium alloys classification, while AISI 420 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 37 titanium and the bottom bar is AISI 420 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 22
8.0 to 15
Fatigue Strength, MPa 170
220 to 670
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 240
420 to 1010
Tensile Strength: Ultimate (UTS), MPa 390
690 to 1720
Tensile Strength: Yield (Proof), MPa 250
380 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 310
620
Melting Completion (Liquidus), °C 1650
1510
Melting Onset (Solidus), °C 1600
1450
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 21
27
Thermal Expansion, µm/m-K 8.9
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 6.8
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
7.5
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 31
2.0
Embodied Energy, MJ/kg 500
28
Embodied Water, L/kg 120
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
88 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 280
380 to 4410
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
25 to 62
Strength to Weight: Bending, points 26
22 to 41
Thermal Diffusivity, mm2/s 8.4
7.3
Thermal Shock Resistance, points 29
25 to 62

Alloy Composition

Aluminum (Al), % 1.0 to 2.0
0
Carbon (C), % 0 to 0.080
0.15 to 0.4
Chromium (Cr), % 0
12 to 14
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
82.3 to 87.9
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 0.75
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 96.9 to 99
0
Residuals, % 0 to 0.4
0