MakeItFrom.com
Menu (ESC)

Grade 37 Titanium vs. AWS E409Nb

Grade 37 titanium belongs to the titanium alloys classification, while AWS E409Nb belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 37 titanium and the bottom bar is AWS E409Nb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 22
23
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 390
500
Tensile Strength: Yield (Proof), MPa 250
380

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Melting Completion (Liquidus), °C 1650
1460
Melting Onset (Solidus), °C 1600
1410
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 21
25
Thermal Expansion, µm/m-K 8.9
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.8
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 36
13
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 31
2.9
Embodied Energy, MJ/kg 500
42
Embodied Water, L/kg 120
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
110
Resilience: Unit (Modulus of Resilience), kJ/m3 280
380
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
18
Strength to Weight: Bending, points 26
18
Thermal Diffusivity, mm2/s 8.4
6.8
Thermal Shock Resistance, points 29
14

Alloy Composition

Aluminum (Al), % 1.0 to 2.0
0
Carbon (C), % 0 to 0.080
0 to 0.12
Chromium (Cr), % 0
11 to 14
Copper (Cu), % 0
0 to 0.75
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
80.2 to 88.5
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
0 to 0.6
Niobium (Nb), % 0
0.5 to 1.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 96.9 to 99
0
Residuals, % 0 to 0.4
0