MakeItFrom.com
Menu (ESC)

Grade 37 Titanium vs. EN 1.4567 Stainless Steel

Grade 37 titanium belongs to the titanium alloys classification, while EN 1.4567 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 37 titanium and the bottom bar is EN 1.4567 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 22
22 to 51
Fatigue Strength, MPa 170
190 to 260
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 240
390 to 490
Tensile Strength: Ultimate (UTS), MPa 390
550 to 780
Tensile Strength: Yield (Proof), MPa 250
200 to 390

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 310
930
Melting Completion (Liquidus), °C 1650
1410
Melting Onset (Solidus), °C 1600
1370
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 21
11
Thermal Expansion, µm/m-K 8.9
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 6.8
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 36
16
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 31
3.1
Embodied Energy, MJ/kg 500
43
Embodied Water, L/kg 120
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
150 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 280
100 to 400
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
19 to 27
Strength to Weight: Bending, points 26
19 to 24
Thermal Diffusivity, mm2/s 8.4
3.0
Thermal Shock Resistance, points 29
12 to 17

Alloy Composition

Aluminum (Al), % 1.0 to 2.0
0
Carbon (C), % 0 to 0.080
0 to 0.040
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0
3.0 to 4.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
63.3 to 71.5
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
8.5 to 10.5
Nitrogen (N), % 0 to 0.030
0 to 0.1
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 96.9 to 99
0
Residuals, % 0 to 0.4
0