MakeItFrom.com
Menu (ESC)

Grade 37 Titanium vs. SAE-AISI 1023 Steel

Grade 37 titanium belongs to the titanium alloys classification, while SAE-AISI 1023 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 37 titanium and the bottom bar is SAE-AISI 1023 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 22
17 to 29
Fatigue Strength, MPa 170
180 to 270
Poisson's Ratio 0.32
0.29
Reduction in Area, % 34
46 to 56
Shear Modulus, GPa 40
73
Shear Strength, MPa 240
280 to 300
Tensile Strength: Ultimate (UTS), MPa 390
430 to 480
Tensile Strength: Yield (Proof), MPa 250
240 to 410

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 310
400
Melting Completion (Liquidus), °C 1650
1460
Melting Onset (Solidus), °C 1600
1420
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 21
53
Thermal Expansion, µm/m-K 8.9
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.8
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 31
1.4
Embodied Energy, MJ/kg 500
18
Embodied Water, L/kg 120
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
77 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 280
150 to 450
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 24
15 to 17
Strength to Weight: Bending, points 26
16 to 17
Thermal Diffusivity, mm2/s 8.4
14
Thermal Shock Resistance, points 29
14 to 15

Alloy Composition

Aluminum (Al), % 1.0 to 2.0
0
Carbon (C), % 0 to 0.080
0.2 to 0.25
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
99.06 to 99.5
Manganese (Mn), % 0
0.3 to 0.6
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 96.9 to 99
0
Residuals, % 0 to 0.4
0