MakeItFrom.com
Menu (ESC)

Grade 37 Titanium vs. C69700 Brass

Grade 37 titanium belongs to the titanium alloys classification, while C69700 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 37 titanium and the bottom bar is C69700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 22
25
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 40
41
Shear Strength, MPa 240
300
Tensile Strength: Ultimate (UTS), MPa 390
470
Tensile Strength: Yield (Proof), MPa 250
230

Thermal Properties

Latent Heat of Fusion, J/g 420
240
Maximum Temperature: Mechanical, °C 310
160
Melting Completion (Liquidus), °C 1650
930
Melting Onset (Solidus), °C 1600
880
Specific Heat Capacity, J/kg-K 550
400
Thermal Conductivity, W/m-K 21
43
Thermal Expansion, µm/m-K 8.9
19

Otherwise Unclassified Properties

Base Metal Price, % relative 36
26
Density, g/cm3 4.5
8.3
Embodied Carbon, kg CO2/kg material 31
2.7
Embodied Energy, MJ/kg 500
44
Embodied Water, L/kg 120
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
99
Resilience: Unit (Modulus of Resilience), kJ/m3 280
250
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 24
16
Strength to Weight: Bending, points 26
16
Thermal Diffusivity, mm2/s 8.4
13
Thermal Shock Resistance, points 29
16

Alloy Composition

Aluminum (Al), % 1.0 to 2.0
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
75 to 80
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.2
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0
0 to 0.4
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Silicon (Si), % 0
2.5 to 3.5
Titanium (Ti), % 96.9 to 99
0
Zinc (Zn), % 0
13.9 to 22
Residuals, % 0
0 to 0.5