MakeItFrom.com
Menu (ESC)

Grade 37 Titanium vs. C96600 Copper

Grade 37 titanium belongs to the titanium alloys classification, while C96600 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 37 titanium and the bottom bar is C96600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
140
Elongation at Break, % 22
7.0
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
52
Tensile Strength: Ultimate (UTS), MPa 390
760
Tensile Strength: Yield (Proof), MPa 250
480

Thermal Properties

Latent Heat of Fusion, J/g 420
240
Maximum Temperature: Mechanical, °C 310
280
Melting Completion (Liquidus), °C 1650
1180
Melting Onset (Solidus), °C 1600
1100
Specific Heat Capacity, J/kg-K 550
400
Thermal Conductivity, W/m-K 21
30
Thermal Expansion, µm/m-K 8.9
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
4.0
Electrical Conductivity: Equal Weight (Specific), % IACS 6.8
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 36
65
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 31
7.0
Embodied Energy, MJ/kg 500
100
Embodied Water, L/kg 120
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
47
Resilience: Unit (Modulus of Resilience), kJ/m3 280
830
Stiffness to Weight: Axial, points 13
8.7
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 24
24
Strength to Weight: Bending, points 26
21
Thermal Diffusivity, mm2/s 8.4
8.4
Thermal Shock Resistance, points 29
25

Alloy Composition

Aluminum (Al), % 1.0 to 2.0
0
Beryllium (Be), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
63.5 to 69.8
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0.8 to 1.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
29 to 33
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Silicon (Si), % 0
0 to 0.15
Titanium (Ti), % 96.9 to 99
0
Residuals, % 0
0 to 0.5