MakeItFrom.com
Menu (ESC)

Grade 37 Titanium vs. S31100 Stainless Steel

Grade 37 titanium belongs to the titanium alloys classification, while S31100 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 37 titanium and the bottom bar is S31100 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22
4.5
Fatigue Strength, MPa 170
330
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
79
Shear Strength, MPa 240
580
Tensile Strength: Ultimate (UTS), MPa 390
1000
Tensile Strength: Yield (Proof), MPa 250
710

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 310
1100
Melting Completion (Liquidus), °C 1650
1420
Melting Onset (Solidus), °C 1600
1380
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 21
16
Thermal Expansion, µm/m-K 8.9
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 6.8
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
16
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 31
3.1
Embodied Energy, MJ/kg 500
44
Embodied Water, L/kg 120
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
40
Resilience: Unit (Modulus of Resilience), kJ/m3 280
1240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
36
Strength to Weight: Bending, points 26
29
Thermal Diffusivity, mm2/s 8.4
4.2
Thermal Shock Resistance, points 29
28

Alloy Composition

Aluminum (Al), % 1.0 to 2.0
0
Carbon (C), % 0 to 0.080
0 to 0.060
Chromium (Cr), % 0
25 to 27
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
63.6 to 69
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
6.0 to 7.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 96.9 to 99
0 to 0.25
Residuals, % 0 to 0.4
0