MakeItFrom.com
Menu (ESC)

Grade 37 Titanium vs. S34565 Stainless Steel

Grade 37 titanium belongs to the titanium alloys classification, while S34565 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 37 titanium and the bottom bar is S34565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 22
39
Fatigue Strength, MPa 170
400
Poisson's Ratio 0.32
0.28
Reduction in Area, % 34
45
Shear Modulus, GPa 40
80
Shear Strength, MPa 240
610
Tensile Strength: Ultimate (UTS), MPa 390
900
Tensile Strength: Yield (Proof), MPa 250
470

Thermal Properties

Latent Heat of Fusion, J/g 420
310
Maximum Temperature: Mechanical, °C 310
1100
Melting Completion (Liquidus), °C 1650
1420
Melting Onset (Solidus), °C 1600
1380
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 21
12
Thermal Expansion, µm/m-K 8.9
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.8
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 36
28
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 31
5.3
Embodied Energy, MJ/kg 500
73
Embodied Water, L/kg 120
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
300
Resilience: Unit (Modulus of Resilience), kJ/m3 280
540
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
32
Strength to Weight: Bending, points 26
26
Thermal Diffusivity, mm2/s 8.4
3.2
Thermal Shock Resistance, points 29
22

Alloy Composition

Aluminum (Al), % 1.0 to 2.0
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
23 to 25
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
43.2 to 51.6
Manganese (Mn), % 0
5.0 to 7.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
16 to 18
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.030
0.4 to 0.6
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 96.9 to 99
0
Residuals, % 0 to 0.4
0